RLC 200 RLC Meter

digimess® expert

Order No.: H.UC 30-00

Deviations from the reference components can be represented either absolutely or relatively.

The information is displayed on a large, backlit alpha-

Delivery package Meter complete with mains cable, replacement fuses and

2 voltage measuring cables with integrated test probes, 1 cable for external polarization voltage and

4-line SMD

adapter

C

L

D

Q

U=

 $\Delta\%$

Measurement specifications	
Measuring parameters	R, G, C, L, D, Q, U=, Δ/Δ%.
Type of connection	Series or parallel connection with 4-pin arrangement of measuring terminals
Measuring frequencies	100 Hz, 1 kHz
Measuring voltage	50 mV, 1 V
Polarization of test object Internal voltage source External voltage source	+5 V ≤ +30 V
Selection of measurement range	Automatic or as fixed range
Input resistance of DC voltmeter	>9MO
Triggering	internal, manual, external via RS 232 C
Measuring time	200 ms

The following measurement tolerances apply for a reference

temperature of +23 °C \pm 1 °C. In the case of defiations from

Measurement tolerances for R and G (Q < 1, D > 1) and for L and C (Q > 1, D < 1)

Measurement tolerances

Data output

 $\leq |Z| <$ 2Ω 20Ω 20Ω $\leq |Z| <$ $200\,\Omega$ 200Ω $\leq |Z| <$ $2k\Omega$

≤ |Z| <

≤ Z <

 $\leq |Z| <$

 $\leq |Z| <$

U_{meas} = 1 V. The measurement tolerance is specified using the

conductance deviation $G = \pm 2 \text{ nS}$ for both measuring

All percentages refer to the displayed measured values.

 $20 k\Omega$

 $5M\Omega$

20 MΩ

Basic accuracy A + additional error K where $U_{meas} = 50 \text{ mV}$

 $20 \, k\Omega$

 $500 \,\mathrm{k}\Omega$

500 kΩ

 $2k\Omega$

20 kΩ

500 kΩ

Where impedance $|Z| \ge 20 \text{ M}\Omega \text{ (0 < G \le 50 nS),}$

 $2k\Omega$

D_m = measured value D (display ed D-value)

Additional error D where $f_{meas} = 1 \text{ kHz}$

10 pF

100 pF 10 nF

100 µF

Capacitance C

≤C<

< C<

≤C<

<C<

D = additional error

 $20 \,\mathrm{k}\Omega$

 $\leq |Z| <$

 $\leq |Z| <$

frequencies.

 $100 \,\mathrm{m}\Omega \leq |Z| < 2\Omega$

he	med	asurement tolerance T_{meas} is calculated using $T_{meas} =$	the following equation: $\left[\pm \left(A\sqrt{1+\underline{P}_{n}^{2}}\right)\pm K\right]K,$				
4	=	basic accuracy in %					
-	=	parameter a parameter and a parameter a parameter and a parame					
		additional error in the last digit (dig)					
4	=	temperature coefficient error					
	Į2	$ Z = R = 1/G$ $ Z = 2\pi$	fL and $ Z = \frac{1}{2\pi fC}$				
Вс	isic	: accuracy A + additional error K w	here U _{meas} = 1 V				
	Impedance Z		Measuring	Measuring frequency			
				3			

500 kΩ $\leq |Z| <$ $5M\Omega$ ± 0.5% ± 5 dig $\pm 0.5\% \pm 3 \, dig$ \pm 3.0% \pm 3 dig $5M\Omega$ $\leq |Z| <$ 20 MΩ not specified Where impedance $|Z| \ge 20 \text{ M}\Omega$ (0 < G $\le 50 \text{ nS}$), Where impedance $|Z| < 100 \text{ m}\Omega$ (0 < R < 100 m Ω), $U_{meas} = 50 \, \text{mV}$. The measurement tolerance is specified using $U_{meas} = 50 \text{ mV}$. The measurement tolerance is specified using the conductance deviation $G = \pm 3$ nS for the measuring the resistance deviation $R = \pm 3 \text{ m}\Omega$ for the measuring frequency 1 kHz. frequency 1 kHz. All percentages refer to the displayed measured values. Measurement tolerance of loss factor D The measuring tolerance T_{meas} of loss factor of capacitances D can be calculated using the equation:

 $T_{mean} = 0.1 D_m \pm D$

Additional error D where $f_{meas} = 100 \text{ Hz}$

100 pF

10nF

100 µF

Measurement tolerance of Q factor The tolerance is \pm 0.2 in the impedance range 100 m $\Omega \le |Z| < 20$ M Ω for R or G as test object.

Q_m = measured value Q = additional error (display ed Q-value)

1 mH 100 H ± 0.3 100 H SL< 1 kH ± 1.5 1kH ≤L< 2kH not specified Additional error Q where $f_{meas} = 100 \text{ Hz}$

In all measurement ranges, the measurement tolerance with DC voltage is: T_{mens} = 0.2% ± 1 dig. The percentages refer to the displayed value. With a short-circuited input, the display may fluctuate by a maximum of \pm 0.2 mV.

Protection class

Dimensions (W×H×D)

Dimensions of packing

Measurement tolerance with DC voltage

Relative atmospheric humidity 40 ... 80% Atmospheric pressure 86 ... 106 kPa Interference suppression VfG 243/1991

Environmental conditions +23°C±1°C Nominal temperature +0°C...+50°C Operating temperature Power supply Operating voltage Sinusoidal AC valtage 110/220 V (± 10%) (internally switchable) 50 ... 60 Hz (± 5%) Power consumption 16 VA Fuses

The RLC 200, an automatic RLC meter, is designed for the In addition to parameter measurements, DC voltages up to 400 V can be measured with a resolution of $100 \mu V$. manual or fully automatic measurement of components. The package includes extensive accessories including an Full remote control is possible via an RS-232 interface. adapter for radial and axial components, an adapter for All the usual component parameters such as resistance, SMD components and a 4-line measuring cable with conductance, inductance, capacitance, Q factor and loss Kelvin clips (see overleaf). factor can be determined with a basic accuracy of 0.2%. As you can see, the RLC 200 offers an unbeatable price/ performance ratio. numeric LCD. operating instructions, 4-line RLC adapter for radial and 1 measuring earth cable. axial components, 4-line SMD adapter, 4-line measuring cable with Kelvin clips,

0.1 pF

 $0.1 \mu H$

0.001

0.1 mV

-999%

0.1

20 mF

20 kH

2

500

400 V

+999%

0.1 pF

 $0.1 \mu H$

0.001

0.1

0.1 mV

0.1%

input of reference value,

automatic measurement range selection or fixed range, absolute and percentage deviation ($\Delta/\Delta\%$) with

Measuring parameter, measurement type, measured value

the reference temperature, the tolerance increases by 50%

triggering and acoustic short-circuit indicator

for every 10 °C.

± 0.5% ± 2 dig

 $\pm 0.3\% \pm 2 \, dig$

± 0.2% ± 2 dig ± 0.2% ± 2 dig

± 0.2% ± 2 dig

 $\pm 0.2\% \pm 2 \, dig$

 $\pm 0.3\% \pm 3 \, dig$

± 1% ±5 dig

 $\pm 0.3\% \pm 3 \, dig$

 $\pm 0.3\% \pm 3 \, dig$

frequencies.

Where impedance $|Z| < 100 \text{ m}\Omega$ (0 < R < 100 m Ω),

U_{meas} = 50 mV. The measurement tolerance is specified using

Measuring frequency

Measuring voltage

Measuring voltage

Measuring voltage

The specified values apply for a reference temperature of

23 °C \pm 1 °C. In the case of deviations from the reference temperature, the tolerance increases by 50% for every 10°C.

1 V ± 0.4

 ± 0.3

 ± 0.5

± 0.5

1 V

 ± 0.3

 ± 0.3

50 mV

± 0.5

1 V

 ± 0.005

 ± 0.005

 ± 0.003

 ± 0.005

50 V

not specified

 ± 0.005

 ± 0.004

 ± 0.010

the resistance deviation $R = \pm 2 \,\mathrm{m}\Omega$ for both measuring

± 0.5% ± 2 dig

 $\pm 0.3\% \pm 1 \, dig$

 $\pm 0.2\% \pm 1 \, dig$

 $\pm 0.3\% \pm 2 \, dig$

 $\pm 1.0\% \pm 2 \, dig$

 \pm 0.3% \pm 2 dig

± 0.3% ± 2 dig

Impedance Z 100 Hz 1 kHz 100 mΩ ≤ |Z| < 2Ω not specified ± 0.8% ± 3 dig $\pm 0.5\% \pm 3 \, dig$ $\pm 0.5\% \pm 2 \, dig$ 2Ω $\leq |Z| <$ 20Ω 20Ω $\leq |Z| <$ 200Ω $\pm 0.3\% \pm 3 \, dig$ $\pm 0.3\% \pm 2 \, dig$ 200Ω $\leq |Z| <$ \pm 0.3% \pm 3 dig ± 0.3% ± 2 dig 2kn

Measuring voltage Capacitance C 50 V IV <C< InF not specified ± 0.005 10 pF ± 0.005 1 nF ≤C< 10 nF ± 0.005 ± 0.003 ± 0.003 10 nF ≤C< $100 \mu F$ 100 µF ≤C< 1 mF ± 0.005 ± 0.003 10 mF ± 0.010 <C< not specified 1 mF

The measurement tolerance of the Q factor of inductances is calculated using the following equation: $T_{meas} = 0.1 Q_m \pm Q$

Additional error Q where $f_{meas} = 1 \text{ kHz}$ Inductance L

≤L<

SLC

Inductance L

1 mH

 $100 \mu H$

50 mV 1 mH 10 mH ≤L< not specified 10 mH ≤L< 2H ± 0.7

T80 mA/250 V (220 V~), T160 mA/250 V (110 V~) I, in accordance with IEC 348, corresponds DIN VDE 0411 Part 1 E8 1 291 mm × 108 mm × 259 mm 338 mm × 138 mm × 408 mm approx. 2.8 kg 4.5 kg Weight incl. packing and accessories